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ldeal Crystal

* An ideal crystal is a periodic array of structural
units, such as atoms or molecules.

* It can be constructed by the infinite repetition of
these identical structural units in space.

« Structure can be described in terms of a lattice,
with a group of atoms attached to each lattice
point. The group of atoms is the basis.



Bravais Lattice

* An infinite array of discrete points with an
arrangement and orientation that appears
exactly the same, from any of the points
the array Is viewed from.

* Athree dimensional Bravais lattice
consists of all points with position vectors
R that can be written as a linear
combination of primitive vectors. The
expansion coefficients must be integers.



Crystal lattice: Proteins

Figure 2 Portion of a crystal of an imaginary protein molecule, in a two-dimensional world. (We
picked a protein molecule because it is not likely to have a special symmetry of its own.) The atomic
arrangement in the crystal looks exactly the same to an observer at r’ as to an observer at r,
provided that the vector T which connects r’ and r may be expressed as an integral multiple of the
vectors a, and a,. In this illustration, T = —a, + 3a,. The vectors a, and a» are primitive transla.



Crystal Structure
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Figure 3 Similar to Fig. 2, but with protein molecules associated in pairs. The crystal translation
vectors are a; and a,. A rotation of 7 radians about any point marked X will carry the crystal into
itself. This occurs also for equivalent points in other cells. but we have marked the naints X anlv



Honeycomb: NOT Bravais

Figure 4.3

The vertices of a two-dimensional honeycomb
do not form a Bravais lattice. The array of
points has the same appearance whether viewed
from point P or point Q. However, the view
from poimnt R is rotated through 180".



Honeycomb net: Bravais lattice
with two point basis

Figure 4.17

The honeycomb net, drawn so as
to emphasize that it is a Bravais
lattice with a two-point basis. The
pairs of points joined by heavy
solid lines are identically placed in
the primitive cells (parallelograms)
of the underlying Bravais lattice.




Crystal structure: basis

Figure 4 The crystal structure is formed
by the addition of the basis (b) to every
lattice point of the lattice (a). By looking at
(c), you can recognize the basis and then
vyou can abstract the space lattice. It does
not matter where the basis is put in rela-
tion to a lattice point.




Translation Vector T

T = u31a, + ugay + uzasz .

Any two lattice points are connected by a vector of this form.
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Miller indices of lattice plane

* The indices of a crystal plane (h,k,l) are
defined to be a set of integers with no
common factors, inversely proportional to
the Intercepts of the crystal plane along
the crystal axes:
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ndices of Crystal Plane

Figure 15 This plane intercepts the a,, a,, ay axes at 3a;, 2a,, 2a;. The
reciprocals of these numbers are 3, 3, 4. The smiallest three integers having
the same ratio are 2, 3, 3, and thus the indices of the plane are (233).



Indices of Planes: Cubic Crystal

{100) (110) (111}

{2000

(100)

Figure 16 Indices of important

planes in a cubic crystal. The plane (200) is parallel to (100) and to
(100).
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110 Planes

(110) Plane referenced to the

f / origin at point O
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111 Planes

(111) Plane referenced to
- the origin at point O

N Other equivalent }
(111) planes
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Symmetry planes

{c) {e) {e)

Figure 8 (a) A plane of symmetry paralle! to the faces of a cube. {b} A diagonal plane of symmetry
in a cube. () The three tetrad axes of a cube. (d} The four triad axes of a cube. {¢) The six diad axes
of a cube.



Bravais Lattice: Two Definitions

(a) A Bravais lattice 1s an infinite array of discrete points with an arrangement and
orientation that appears exactly the same, from whichever of the points the
array is viewed.

{b) A (three-dimensional) Bravais lattice consists of all points with position vectors
R of the form

R = nma; + nya, + nia;, 4.1)

The expansion coefficients n1, n2, n3 must be integers. The vectors
al,a2,a3 are primitive vectors and span the lattice.



Reciprocal Lattice

* Every periodic structure has two lattices
associated with it. The first is the real
space lattice, and this describes the
periodic structure. The second Is the
reciprocal lattice, and this determines how
the periodic structure interacts with waves.
This section outlines how to find the basis
vectors for the reciprocal lattice from the
basis vectors of the real space lattice.



In real space we have:
a, b, coapy

While in reciprocal space we have:
a* b* C* OC* ﬂ* y*

In the simple case of the orthorhombic tetragonal
and cubic systems where a, £, y = 90°

A* =1/a; b*=1/b; c* =1/c and

a, f,yand a*, p*, y* = 90°

However:




In the triclinic system:

TABLE 2.3 Triclinic Direct and Reciprocal Relationships

A bc sin a b*c* sin o*
= a=
\%
pr = %€ sin B - a*c* sin g*
v I 7
P ab sin vy - a*b* sin y*
vV v*
1

V=V;= abcV1 —cos® a — cos? B —cos” y+2 cos a cos B cos y

1

V* = == a*b*c*V1 —cos? a* — cos? B* —cos? y* + 2 cos a* cos B* cos y*
_ * .- *
x _ COs B Ccosy—cos a cos B* cos y© —cos a
cosa” = . , cos a = g PR
sin B sin vy sin 87 sin 7y
COs a cos y —cos B cos a* cos y* —cos B*
* _ —
cos B* = : . cos B = i
sin a sin 7y sin a” sin 7y
— * - *
4 COs acosB—cosy cos a™ cos BT —cos vy
cosy = 2 y Cos y = ¥ i R¥
sin a sin B sin a” sin 8




Reciprocal lattices corresponding to crystal
systems in real space
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(111) Hexagonal Cl
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We deal with reciprocal lattice
Transformation in Miller indices.
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Diagram showing 4 Miller planes and how
these are used to derive the equivalent
reciprocal points, one for each set of Miller



Max von Laue
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| aue conditions

P(F) = Ae*™ T k==

Scattering from a periodic distribution of scatters along the a axis

The scattered wave will be in phase and constructive interference
will occur if the phase difference is 2.

®=2tma (k-k,)=21mma-g= 21h, similar for b and c

d,, =ha” +kb" +Ic”

Note the use of reciprocal values for a, b, and c



The Laue eguations

The Laue equations give three conditions for incident waves to be diffracted
by a crystal lattice

Two lattice
points separated
by a vector r

Waves scattered from two lattice points
separated by a vector r will have a path
difference in a given direction.

The scattered waves will be in phase r
and constructive interference will occur
if the phase difference is 21r.

The path difference is the difference
between the projection of r on k and the

projection of r on K, @= 21r-(k-K;) A=a(k-k,)=h (hKI) ™. T
If (k-k,) = r*, then ¢@= 21n \
r*= ha*+kb*+lc* A=b-(k-ko)=k
A=r . (k-Kp)

A=c-(k-k,)=l




Bragg's law

» William Henry and William Lawrence
Bragg (father and son) found a simple
interpretation of von Laue’s experiment

» Consider a crystal as a periodic
arrangement of atoms, this gives crystal
planes

* Assume that each crystal plane reflects

radiation as a mirror o o0 ¢ oo

* Analyze this situation for cases of
constructive and destructive interference
* Nobel prize in 1915




Derivation of Bragg's law

sin(@) = X

hkl
= X =d,,, sin(0)

Path difference A= 2x => phase shift
Constructive interference if A=nA
This gives the criterion for constructive interference:

— A =2d,,SIn(@) =nA

Bragg’s law tells you at which angle 65 to expect maximum diffracted
intensity for a particular family of crystal planes. For large crystals, all
other angles give zero intensity.




Bragg's law

e nA=2dsin6

— Planes of atoms responsible
for a diffraction peak behave
as a mirror

The path difference: x-y

Y= x cos26 and x sin6=d
c0s26= 1-2 sinZ6



2.4. BRAGG’S LAW IN RECIPROCAL SPACE

In X-ray crystallography the most important property of the reciprocal
lattice is that it allows a simple visualization of Bragg’s law that is much
more convenient in practice than the one used in the derivation above.
Imagine a crystal in a beam of X-rays of wavelength A, and consider the
a*c* section of its reciprocal lattice (Fig. 2.21a). Assuming that the crystal
is oriented so that the X-ray beam is parallel to this a*c* plane, draw a line
XO in the direction of the beam and passing through the r.l. origin O.
Finally, describe a circle of radius 1/A with its center C on XO and located
so that O falls on its circumference.

Now consider the properties of an r.l. point P lying on this circle. The
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A Figure 2.20. Reciprocal lattice levels
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34 DIFFRACTION OF X-RAYS

(b)

Figure 2.21. Diffraction in terms of the reciprocal lattice. (a) The reciprocal lattice
and the sphere of reflection; (b) the direct plane and the reflected ray.

angle OPB is inscribed in a semicircle and thus is a right angle. Therefore,

: VTR - N
sin OBP =sin 0 = OB 2/n (2.16)
sin @ =(OP/2)A (2.17)

But since P is a reciprocal lattice point, the length of OP is by definition
equal to 1/du. Substituting gives

sin = l)t/Zdhk[ (218)
or

1A =2dsin 0 (2.19)

which is just Bragg’s law with n = 1.



The limiting-sphere construction

Vector representation of

Bragg law
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The Ewald Sphere (‘limiting sphere
construction’)

Elastic scattering:
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Figure 2.22. Spheres of reflection for two wavelengths.



36 DIFFRACTION OF X-RAYS
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Typical X—ray diffraction pattern
collected by film methods shown below.






